Confidence Measures and Their Applications in Music Labelling Systems Based on Hidden Markov Models

نویسندگان

  • Johan Pauwels
  • Ken O'Hanlon
  • György Fazekas
  • Mark B. Sandler
چکیده

Inspired by previous work on confidence measures for tempo estimation in loops, we explore ways to add confidence measures to other music labelling tasks. We start by reflecting on the reasons why the work on loops was successful and argue that it is an example of the ideal scenario in which it is possible to define a confidence measure independently of the estimation algorithm. This requires additional domain knowledge not used by the estimation algorithm, which is rarely available. Therefore we move our focus to defining confidence measures for hidden Markov models, a technique used in multiple music information retrieval systems and beyond. We propose two measures that are oblivious to the specific labelling task, trading off performance for computational requirements. They are experimentally validated by means of a chord estimation task. Finally, we have a look at alternative uses of confidence measures, besides those applications that require a high precision rather than a high recall, such as most query retrievals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Comparison of Confidence Measures for Face Recognition

This paper compares different confidence measures for the results of statistical face recognition systems. The main applications of a confidence measure are rejection of unknown people and the detection of recognition errors. Some of the confidence measures are based on the posterior probability and some on the ranking of the recognition results. The posterior probability is calculated by apply...

متن کامل

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Evaluation of the Hidden Markov Model for Detection of P300 in EEG Signals

Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool  between humans and machines. Most brain-computer interface (BCI) systems use the P300 component,  which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for  detection of P300.  Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017